Примеры решения задач

Пример 1. По контуру, изображенному на схеме, идет ток силой 10 А. Определить магнитную индукцию в точке О, если радиус дуги R = 10 см, α = 60.

Решение.В силу принципа суперпозиции магнитных полей магнитная индукция в точке О равна векторной сумме магнитных индукций, созданных всеми элементами контура с током. Разобьем весь контур на три участка – дугу АВ и прямоугольные отрезки ВС, СА, чтобы для вычисления их магнитных полей можно было воспользоваться формулами для определения магнитной индукции в произвольной точке А поля, созданного прямолинейным проводником с током I (формула (1)), и для определения магнитной индукции в центре дуги окружности длиной L и радиусом R, обтекаемой током I (формула (2)).

(1)

(2)

Здесь а – расстояние от точки А до проводника; φ1 и φ2 – углы, образованные радиусом-вектором, проведенным в точку А соответственно из начала и конца проводника.

Тогда получим

(3)

Сначала вычислим модули всех трех слагаемых. Поскольку угол α = 60, дуга АВ составляет 1/6 часть окружности, т. е. L = 2πR/6=πR/3. Подставив это значение в формулу (2), найдем

(4)

Далее по формуле (1) определим величину ВВС. На схеме видно, что углы, входящие в эту формулу, φ1= 30, φ2= 90. Расстояние от точки О до провода ВС есть а = ОС = R sin φ = R/2. Подставив значения а, φ1, φ2 в формулу (1), имеем

(5)

Обратимся к уравнению, выражающему в скалярной форме закон Био –Савара – Лапласа, с помощью которого выведена формула (1).

(6)

Для любого элемента dl проводника СА угол, образованный этим элементом (взятый по направлению тока) и радиусом-вектором , проведенным от элемента в точку О, равен π. Следовательно, sin(dl,r) = 0. Однако при этом знаменатель формулы (6) отличен от нуля. Таким образом, dB = 0 для любого элемента проводника СА. Отсюда ясно, что и весь проводник СА не создает в точке О магнитного поля. Тогда соотношение (3) упростится:

(7)

Поскольку точка О и контур АВС лежат в одной плоскости, оба вектора АВ, ВС, будучи перпендикулярными этой плоскости, оказываются расположенными вдоль одной прямой – нормали к плоскости чертежа, проходящей через точку О. При этом, согласно правилу правого винта, вектор АВ направлен от наблюдателя, вектор ВС – к наблюдателю. Приняв одно из этих направлений (например второе) за положительное, можно вместо (7) написать скалярное равенство

В = ВВС – ВАВ

или, с учетом (4) и (5),

Подставив в эту формулу величины, выраженные в единицах СИ: I = 10 A, R = 0.1 Ом, μ0 = 4π × 10–7 Гн/м, и произведя вычисления, получим В = 6,9 мкТ.


Пример 2. По двум длинным параллельным проводам текут в противоположных направлениях токи силой I1 = I2 = I =10 А. Расстояние между проводами а = 0.3 м. Определить магнитную индукцию в точке А, удаленной от первого и второго проводов соответственно на расстояния а1=0.15 м, а2 = 0.2 м.

Решение. Согласно принципу суперпозиции полей магнитная индукция в точке А равна векторной сумме магнитных индукций, созданных каждым током в отдельности:

Однако здесь, в отличие от предыдущей задачи, точка А, в которой надо определить поле, и оба параллельных провода не лежат в одной плоскости. Поэтому векторы , не коллинеарны. Пусть они образуют угол α. Тогда модуль вектора В на основании теоремы косинусов

(1)

Величины В1 и В2 можно найти по формуле для определения магнитной индукции в произвольной точке А поля, созданного прямолинейным проводником с током I:

, (2)

где φ1, φ2 – углы, образованные радиусом-вектором, проведенным в точку А соответственно из начала и конца проводника, с направлением тока.

Так как в условии задачи речь идет о длинных проводниках, то ясно, что точка А удалена от концов каждого провода на значительно большее расстояние, чем от самого провода. При этом φ1= 0, а φ2 = π. Тогда получим

(3)

Чтобы определить cos α, входящий в формулу (1), учтем, что каждый из векторов , лежит в плоскости, перпендикулярной соответствующему проводнику с током. Поэтому на схеме, выполненной в плоскости, содержащей векторы , , оба проводника проектируются в точки. В соответствии с принятым обозначением ток I1 показан направленным от наблюдателя, ток I2 – к наблюдателю. Векторы , изображены на схеме так, что их направление связано с направлением соответствующих токов правилом правого винта.

Пусть угол между отрезками а1, а2 равен β. Поскольку каждый из векторов , перпендикулярен соответствующему отрезку, должно выполняться равенство

α + β = π (4)

По теореме косинусов имеем

(5)

Из соотношений (4) и (5) следует

(6)

Подставив в (1) значения В1, В2, oпределяемые по формуле (3), а также cos α из (6), найдем

Подставив числовые значения величин (все они даны в СИ) и произведя вычисление, получим ответ:

мкТл.

Пример 3. В однородном магнитном поле с индукцией 10 × 10–2 Тл расположена прямоугольная рамка аbc, подвижная сторона которой ad длиной 0,1 м перемещается со скоростью 25 м/с перпендикулярно линиям индукции поля. Определить ЭДС индукции, возникающую в контуре аbcd.

Решение.Задачу можно решить двумя способами, применяя закон Фарадея для электромагнитной индукции или рассматривая силы, действующие на свободные электроны в движущейся проволоке (силы Лоренца).

1. При движении проводника аd площадь рамки увеличивается, магнитный поток Ф сквозь рамку возрастает, а значит, согласно закону Фарадея

(1)

в рамке должна при этом действовать ЭДС индукции. Чтобы ее найти, сначала выразим магнитный поток Ф через индукцию поля В и стороны рамки L, x.

Согласно формуле для определения потока вектора магнитной индукции сквозь поверхность S имеем

Ф = ВS = BLx.

Подставив это значение Ф в (1) и учитывая, что В, L – величины постоянные, запишем

где dx/dt = V – cкорость перемещения проводника ad. Поэтому

(2)

Сделав подстановку числовых значений величин B, L, V, получим ответ:

ε = –25 мВ.

Знак «минус» в формуле (2) показывает, что ЭДС индукции действует в контуре в таком направлении, при котором связанная с ним правилом правого винта нормаль к контуру противоположна вектору (т. е. направлена к наблюдателю на схеме). Значит, индукционный ток направлен в контуре против часовой стрелки.

2. Согласно определению,

, (3)

где q – величина заряда.

При движении в магнитном поле проводника ad вместе с ним движутся со скоростью V его свободные заряды (электроны). Поэтому на каждый из них действует сила Лоренца, выполняющая роль сторонней силы . Поскольку перпендикулярна , то сила Лоренца

F = qVB.

Так как она действует только вдоль участка ad длиной L, интеграл, стоящий в (3),

Подставив это значение интеграла в формулу (3), получим

(4)

что совпадает (по абсолютному значению) с формулой (2).

Пример 4. На проволочный виток радиусом 0.1 м, помещенный между полюсами магнита, действует максимальный механический момент
0.65 × 10–5 Н × м. Сила тока в витке 2 А. Определить напряженность поля между полюсами магнита. Действием магнитного поля Земли пренебречь.

Решение.Напряженность Н магнитного поля можно определить из выражения механического момента М, действующего на виток с током в магнитном поле

(1)

где pm – магнитный момент витка с током; B – индукция магнитного поля;
α – угол между направлением напряженности магнитного поля и нормали к плоскости витка.

Если учесть, что максимальное значение механический момент принимает при sin α = 1 и магнитный момент витка с током имеет выражение

pm = I × S,

где S = π·R2 – площадь, то формула (1) примет вид

M = μ·μ0·ISH. (2)

Отсюда

(3)

Подставив в (3) числовые значения, получим

А/м.

Пример 5. Если сила тока, проходящего в некотором соленоиде, изменяется на 50 А в секунду, то на концах соленоида возникает ЭДС самоиндукции, равная 0.08 В. Определить по этим данным индуктивность соленоида.

Решение. Индуктивность имеет следующий физический смысл: она численно равна ЭДС самоиндукции, возникающей на концах соленоида в момент, когда ток, проходящий через соленоид, меняется на единицу силы тока в единицу времени. Математически это выражается известным законом Фарадея – Максвелла, примененным к ЭДС самоиндукции,

Вынося постоянную величину L за знак дифференциала, получим

Отсюда, опуская знак «минус», найдем

.

Подставив числовые значения, получим

Гн.

Пример 6. Определить ЭДС индукции, возникающую на концах крыльев турбореактивного самолета, движущегося горизонтально со скоростью 900 км/ч, если размах крыльев самолета 36.5 м, а вертикальная составляющая напряженности магнитного поля Земли 39.85 А/м.

Решение.ЭДС индукции можно определить по формуле

.

По условию задачи α = 90, поэтому

.

Индукцию магнитного поля найдем из условия

где μ = 1 (для воздуха); μ0= 4π × 10–7 Гн/м.

Тогда получим

Подставим числовые значения в системе СИ:

В.

Пример 7. Колебательный контур, состоящий из воздушного конденсатора с двумя пластинами по 100 см2 каждая и катушки с индуктивностью 1000 см, резонирует на волну длиной 10 м. Определить расстояние между пластинами конденсатора.

Решение.Расстояние между пластинами конденсатора можно найти из формулы емкости плоского конденсатора

где ε – относительная диэлектрическая проницаемость среды, заполняющей конденсатор; S – площадь пластины конденсатора; d – расстояние между пластинами. Отсюда

.

Емкость найдем из формулы Томсона, определяющей период колебаний в электрическом контуре:

где L – индуктивность катушки.

Отсюда

Неизвестный в условии задачи период колебаний T можно определить, зная длину волны λ, на которую резонирует контур.

Длина волны связана с периодом соотношением

λ =cT,

где с – скорость света в вакууме.

Отсюда

T = λ / с.

Подставив выражение T в C, а затем выражение емкости C – в d, получим

В системе СИ:

S = 100 см2 = 10–2 м2;

L = 1000 см =1000 × 10–9 Гн;

c = 3 × 108 м/с;

λ = 10 м;

ε = 1;

Ф/м.

Подставив числовые значения в d, получим

м.

Пример 8. В сеть переменного тока напряжением 110 В включены последовательно конденсатор емкостью 5·10–5 Ф, а также катушка с индуктивностью 200 мГн и активным сопротивлением 4 Ом.

Определить:

а) эффективную силу тока в цепи, если частота переменного тока 100 Гц;

б) частоту переменного тока, при которой в данном контуре наступит резонанс напряжений;

в) силу тока в цепи и напряжение на зажимах катушки и на пластинах конденсатора при наступлении резонанса напряжений.

Решение.а)Сила тока в цепи, содержащей индуктивность, емкость и активное сопротивление, определяется по формуле

(1)

где Uэф – эффективное напряжение переменного тока; – полное сопротивление; R – активное сопротивление цепи; – общее реактивное сопротивление; ω = 2πν – круговая частота переменного тока; ωL – реактивное индуктивное сопротивление;
– реактивное емкостное сопротивление.

Подставив в (1) числовые значения величин, получим

А.

б) Резонанс напряжений наступает при условии равенства частоты переменного тока и частоты собственных колебаний контура:

(2)

Подставив в (2) числовые значения L и C , получим

Гц.

в) При резонансе емкостное и индуктивное сопротивления равны между собой, а общее реактивное сопротивление равно нулю, т. е.

Следовательно, полное сопротивление цепи при резонансе

Сила тока при резонансе

А.

Напряжение UL на зажимах катушки и напряжение UC на пластинах конденсатора в момент наступления резонанса равны, так как в этот момент равны реактивные сопротивления катушки и конденсатора

В численном выражении

В.


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *